Problemas de Fundamentos de Química (1º Grado en Física)

Tema 9. EQUILIBRIO REDOX

- 9.1. Ajusta las siguientes reacciones:
 - a) $H_2SO_4 + C \rightarrow CO_2 + SO_2 + H_2O$
 - b) $KMnO_4 + H_2O_2 + H_2SO_4 \rightarrow O_2 + MnSO_4 + K_2SO_4 + H_2O_4$
 - c) $HNO_3 + ZnS \rightarrow S + NO + Zn(NO_3)_2 + H_2O$
 - d) $K_2Cr_2O_7 + KBr + H_2SO_4 \rightarrow Br_2 + K_2SO_4 + Cr_2(SO_4)_3 + H_2O$
 - e) Dióxido de azufre + permanganato potásico + agua → sulfato de manganeso (II) + ácido sulfúrico + sulfato de potasio
 - f) Etanol + permanganato de potasio + ácido clorhídrico → ácido acético + cloruro de manganeso(II)
 - g) El zinc reacciona con ácido nítrico, originando nitrato de zinc (II) y nitrato amónico.
- 9.2. Considera la pila galvánica Pt | H₂ (g) | HCl | | CuSO₄ | Cu | Pt.
 - a) Escribe las reacciones que tienen lugar en cada electrodo y la reacción global.
 - b) Calcula la f.e.m. si todas las especies se encuentran en sus estados de referencia.
 - c) Calcula la f.e.m. si $P(H_2) = 700$ torr, [HC1] = 0.1 M, $[CuSO_4] = 0.2$ M.

Datos: $\mathcal{E}^{\circ}(Cu^{2+}|Cu) = 0.339 \text{ V}.$

- 9.3. La f.e.m. de la pila $Pt|H_2(1 \text{ bar})|HCl||AgNO_3(0.1M)|Ag|Pt$ es 0.951 V. Calcula el pH de la disolución de HCl. *Datos*: $\mathcal{E}^o(Ag^+|Ag) = 0.799 \text{ V}$.
- 9.4. Se construye una pila uniendo dos electrodos de Fe|Fe $^{2+}$ y Cd|Cd $^{2+}$ mediante un puente salino. Calcula la f.e.m. de la pila identificando ánodo y cátodo en los siguientes casos: a) [Fe $^{2+}$] = [Cd $^{2+}$] = 0.1 M; b) [Fe $^{2+}$] = 0.1 M, [Cd $^{2+}$] = 0.001 M. Datos: \mathcal{E}° (Cd $^{2+}$ |Cd) = -0.40 V; \mathcal{E}° (Fe $^{2+}$ |Fe) = -0.44 V.
- 9.5. ¿Para qué concentración de SnCl₂ la f.e.m. de la pila Pt $|Sn|SnCl_2||Pb(NO_3)_2$ (0.5M) |Pb|Pt es 0 Voltios? *Datos*: $\mathcal{E}^o(Pb^{2+}|Pb) = -0.126 \text{ V}$; $\mathcal{E}^o(Sn^{2+}|Sn) = -0.141 \text{ V}$.
- 9.6. Se construye una pila estándar de cobre-cadmio, se cierra el circuito y se deja que la pila opere. Tras un cierto tiempo la pila se ha agotado y su f.e.m. es cero. a) ¿Cuál será la relación de las concentraciones de Cd²+ y Cu²+ en ese instante? b) ¿Cuánto valdrán ambas concentraciones? Datos: £° (Cu²+ | Cu) = 0.339 V; £° (Cd²+ | Cd) = -0.403 V.
- 9.7. Calcula el producto de solubilidad del PbI₂ si los potenciales normales de electrodo de las semirreacciones PbI₂ + 2e⁻ \rightarrow Pb + 2I⁻ y Pb²⁺ + 2e⁻ \rightarrow Pb son -0.365 V y -0.126 V, respectivamente.
- 9.8. Calcula la constante de equilibrio de la reacción (sin ajustar): $Fe^{3+} + I_2 \rightarrow Fe^{2+} + I^-$. *Datos*: $\mathcal{E}^{\circ}(Fe^{3+}|Fe^{2+}) = 0.771 \text{ V}$; $\mathcal{E}^{\circ}(I_2|I^-) = 0.536 \text{ V}$.
- 9.9. Calcula la f.e.m. de la pila Cu|CuSO₄ (0.2M)||CuSO₄ (0.01M)|Cu. Escribe las semirreacciones que tienen lugar en cada electrodo así como la reacción neta. ¿En qué sentido se moverán los electrones si se conectan ambos electrodos mediante un alambre?
- 9.10. Calcula la f.e.m. de la pila $Ag |Cd|CdCl_2(0.1M)||AgCl|Ag$. Datos: $\mathcal{E}^{\circ}(Cd^{2+}|Cd) = -0.40 \text{ V}$; $\mathcal{E}^{\circ}(AgCl|Ag + Cl^{-}) = 0.22 \text{ V}$.

1

- 9.11. Calcula la f.e.m. de la siguiente celda: un electrodo está formado por el par ion férrico/ion ferroso en concentraciones 1.00 M y 0.10 M, respectivamente. El otro electrodo está formado por el par ion permanganato/ion manganeso(II) en concentraciones 0.010 M y 0.0001 M, respectivamente, y pH=3. *Datos*: \mathcal{E}° (Fe³⁺| Fe²⁺) = 0.77 V; \mathcal{E}° (MnO₄⁻, H⁺| Mn²⁺) = 1.52 V.
- 9.12. ¿Cuáles de las siguientes reacciones serán espontáneas en medio ácido? Completa y ajusta las ecuaciones. *Datos*: $\mathcal{E}^{\circ}(I_2|\Gamma) = 0.53 \text{ V}$; $\mathcal{E}^{\circ}(NO_3^-, H^+|NO) = 0.96 \text{ V}$; $\mathcal{E}^{\circ}(H_2SO_3, H^+|S) = 0.45 \text{ V}$; $\mathcal{E}^{\circ}(S, H^+|H_2S) = 0.14 \text{ V}$.
 - (a) $I^- + NO_3^- \rightarrow I_2 + NO$
 - b) $H_2SO_3 + H_2S \rightarrow S$
- 9.13. ¿Cuáles serán las reacciones espontáneas que tendrán lugar entre los siguientes pares de especies? Considera que todas las actividades son iguales a 1.
 - a) Fe^{3+}/Fe^{2+} y I_2/I^{-}
 - b) $Ag^+/Ag y Br_2/Br^-$
 - c) $Cr_2O_7^{2-}/Cr^{3+}$ y MnO_4^{-}/Mn^{2+}
 - d) H_2O_2/H_2O y NO_3^-/NO

Datos: $\mathcal{E}^{\circ}(Fe^{3+}|Fe^{2+}) = 0.77 \text{ V}; \mathcal{E}^{\circ}(I_2|\Gamma) = 0.53 \text{ V}; \mathcal{E}^{\circ}(Ag^+|Ag) = 0.80 \text{ V}; \mathcal{E}^{\circ}(Br_2|Br^-) = 1.07 \text{ V}; \mathcal{E}^{\circ}(Cr_2O_7^{2-}|Cr^{3+}) = 1.36 \text{ V}; \mathcal{E}^{\circ}(MnO_4^-, H^+|Mn^{2+}) = 1.52 \text{ V}; \mathcal{E}^{\circ}(H_2O_2|H_2O) = 1.77 \text{ V}; \mathcal{E}^{\circ}(NO_3^-, H^+|NO) = 0.96 \text{ V}.$

- 9.14. El agua puede actuar como agente reductor del Fe(III) a Fe(II) oxidándose a oxígeno molecular.
 - a) Ajusta la reacción iónica correspondiente en medio ácido.
 - b) ¿Será espontánea esta reacción a pH = 6 y a una presión parcial de oxígeno de 0.20 atm, si el resto de las especies se encuentran en sus estados de referencia?
 - c) Razona si el poder reductor del agua será mayor o menor en medios aerobios o anaerobios.

Datos: $\mathcal{E}^{\circ}(Fe^{3+}|Fe^{2+}) = 0.77 \text{ V}; \mathcal{E}^{\circ}(O_2, H^+|H_2O) = 1.23 \text{ V}.$

9.15. Razona qué formas de manganeso pueden: a) ser oxidadas por el agua; b) oxidar al agua. Considera que todas las especies presentes tienen actividad 1.

Datos: \mathcal{E}° (Mn²⁺|Mn) = -1.18V; \mathcal{E}° (Mn³⁺|Mn²⁺) = +1.54V; \mathcal{E}° (MnO₄⁻, H⁺|Mn²⁺) = +1.51V; \mathcal{E}° (MnO₂(s), H⁺|Mn²⁺) = +1.22V; \mathcal{E}° (MnO₄⁻, OH⁻|MnO₂) = +0.59V; \mathcal{E}° (O₂, H⁺|H₂O) = +1.23V; \mathcal{E}° (H₂O|H₂, OH⁻) = -0.83V.

- 9.16. Calcula la carga eléctrica que se necesita para obtener, en la electrólisis del agua acidulada con sulfúrico, 4.0 litros de oxígeno medidos a 17 °C y 700 torr. *Datos*: $\mathcal{E}^{\circ}(O_2, H^+|H_2O) = 1.23 \text{ V}$.
- 9.17. Se desea recubrir una pieza de 3.50 cm² de superfície con una capa de plata de 0.20 mm de espesor mediante electrodeposición de una disolución de AgNO₃. ¿Durante cuánto tiempo deberá pasar una corriente de 0.20 A para conseguirlo? *Dato*: ρ(Ag) = 10.5 g/cm³.
- 9.18. Se lleva a cabo la electrólisis de 250 mL de una disolución de CuCl₂ 0.433 M. ¿Durante cuánto tiempo debe circular una corriente de 0.75 A para que se reduzca la concentración de Cu²⁺ a 0.167 M? ¿Qué masa de Cu(s) se depositará sobre el cátodo durante este tiempo?

Soluciones

- 9.1. a) $2H_2SO_4 + C \rightarrow CO_2 + 2SO_2 + 2H_2O$
 - b) $2KMnO_4 + 5H_2O_2 + 3H_2SO_4 \rightarrow 5O_2 + 2MnSO_4 + K_2SO_4 + 8H_2O_4$
 - c) $8HNO_3 + 3ZnS \rightarrow 3S + 2NO + 3Zn(NO_3)_2 + 4H_2O$
 - d) $K_2Cr_2O_7 + 6KBr + 7H_2SO_4 \rightarrow 3Br_2 + 4K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O_4$
 - e) $5SO_2 + 2KMnO_4 + 2H_2O \rightarrow 2MnSO_4 + 2H_2SO_4 + K_2SO_4$
 - f) $5CH_3CH_2OH + 4KMnO_4 + 12HCl \rightarrow 5CH_3COOH + 4MnCl_2 + 11H_2O + 4KCl$
 - g) $4Zn + 10HNO_3 \rightarrow 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O$
- 9.2. b) $\mathcal{E} = 0.339 \text{ V}$; c) $\mathcal{E} = 0.377 \text{ V}$.
- 9.3. pH = 3.6.
- 9.4. a) $\mathcal{E} = 0.04 \text{ V}$, el ánodo es el electrodo de Fe; b) $\mathcal{E} = 0.02 \text{ V}$, el ánodo es el electrodo de Cd.
- 9.5. 1.6 M.
- 9.6. a) $[Cd^{2+}]/[Cu^{2+}] = 1.4 \cdot 10^{25}$; b) $[Cd^{2+}] = 2.0 \text{ M}$; $[Cu^{2+}] = 1.4 \cdot 10^{-25} \text{ M}$.
- 9.7. $K_{ps} = 8.3 \cdot 10^{-9}$.
- 9.8. $K = 8.8 \cdot 10^7$.
- 9.9. $\mathcal{E} = -0.038 \text{ V}$. Los electrones se mueven del electrodo de la derecha al de la izquierda.
- 9.10. $\mathcal{E} = 0.696 \text{ V}.$
- 9.11. $\mathcal{E} = 0.42 \text{ V}$.
- 9.12. a) $6I^- + 8H^+ + 2NO_3^- \rightarrow 3I_2 + 2NO + 4H_2O$ es espontánea, $\mathcal{E}^0 = 0.42V$; b) $H_2SO_3 + 2H_2S \rightarrow 3S + 3H_2O$ es espontánea, $\mathcal{E}^0 = 0.31V$.
- 9.13. a) Reducción del Fe³⁺ y oxidación del I⁻; b) reducción del Br₂ y oxidación de Ag; c) reducción del MnO₄⁻ y oxidación del Cr³⁺; d) reducción del H₂O₂ y oxidación del NO.
- 9.14. a) $4Fe^{3+} + 2H_2O \rightarrow 4Fe^{2+} + O_2 + 4H^+$; b) $\mathcal{E} = -0.093V$, no es espontánea; c) en medios anaerobios.
- 9.15. a) Mn; b) MnO₄ en medio ácido y Mn³⁺.
- 9.16. 6.0·10⁴ C.
- 9.17. 55 minutos.
- 9.18. 285 minutos; 4.23 g.