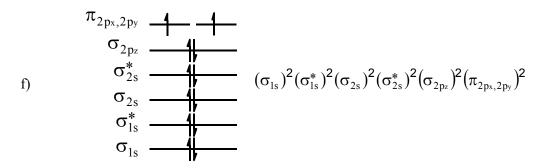
Tema 1. ENLACE QUÍMICO

- **1.1.** La capa más externa de la configuración electrónica de un elemento químico A es $5s^1$ y la de otro B es $3s^23p^5$. ¿Qué tipo de enlace esperas que exista en el compuesto AB?
- 1.2. Ordena los siguientes elementos de mayor a menor electronegatividad: Na, Al, Fr, Cl, F y P.
- **1.3.** Escribe los símbolos de Lewis para los siguientes átomos o iones: a) H⁻; b) Kr; c) K⁺; d) Br⁻; e) Sc³⁺; f) N; g) Ca; h) Se²⁻.
- **1.4.** Escribe una estructura de Lewis aceptable para cada una de las siguientes moléculas: a) CS₂; b) (CH₃)₂CO; c) Cl₂CO; d) FNO.
- **1.5.** ¿Cuáles de las siguientes moléculas esperas que tengan momento dipolar: a) F₂; b) NO₂; c) BF₃; d) HBr; e) H₂CCl₂; f) SiF₄; g) OCS? Razona la respuesta.
- **1.6.** Indica la geometría de las siguientes moléculas y la hibridación del átomo central: a) BeCl₂, b) CO₂, c) BF₃, d) NO₃⁻, e) CH₄, f) NH₃, g) SO₄²⁻, h) PO₄³⁻, i) H₂O, j) BrF, k) OF₂, l) PCl₅, m) SF₄, n) SF₆, o) IF₅, p) HC≡C–BH–CH₃, q) SO₂, r) SO₃.
- 1.7. Considera las tres moléculas siguientes:

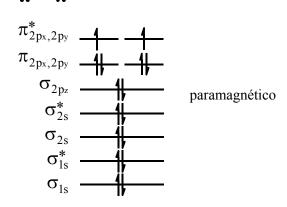
$$\begin{array}{ccc} |\overline{\underline{Z}} - \underline{X} = \overline{\underline{Y}} & & |\overline{\underline{Z}} - \overline{\underline{Y}} - \overline{\underline{Z}}| & & \overline{\underline{Y}} = \underline{X} = \overline{\underline{Y}} \\ |Z| & & \end{array}$$

- a) Describe razonadamente cuál sería la estructura geométrica de estas moléculas. b) En el caso de que X, Y y Z fueran elementos del segundo periodo y no existieran cargas formales, ¿cuáles serían los elementos X, Y y Z?
- **1.8.** Escribe los diagramas de orbitales moleculares para las siguientes especies: a) NO; b); NO⁺; c) CO; d) CN; e) CN⁻; f) CN⁺. Considera que todas las moléculas se describen con el esquema energético de orbitales moleculares de las moléculas diatómicas homonucleares sin inversiones: $\sigma_{1s}\sigma_{1s}^*\sigma_{2s}\sigma_{2s}^*\sigma_{2p}\pi_{2p}\pi_{2p}^*\sigma_{2p}^*\cdots$
- **1.9.** Considerando el diagrama de orbitales moleculares del NO⁺ obtenido en el ejercicio anterior, calcula el orden de enlace e indica si es paramagnético o diamagnético.
- **1.10.** Escribe la estructura de Lewis y el esquema de orbitales moleculares para la molécula de O_2 y compara la interpretación que da cada teoría sobre su carácter paramagnético.
- **1.11.** Justifica la resonancia (nube π) de la molécula de benceno a partir del diagrama de orbitales moleculares resultante de combinar los 6 orbitales p_z perpendiculares al plano de la molécula.

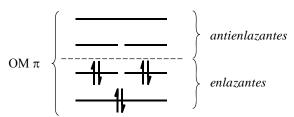
Soluciones


- 1.1. Enlace iónico.
- **1.2.** F > Cl > P > Al > Na > Fr.

$$\textbf{1.3.} \quad \text{a)} \left[\textbf{H$:]}^{-} \quad \text{b)} : \overset{\bullet}{\textbf{Kr}} : \quad \text{c)} \left[\overset{\bullet}{\textbf{K}} \overset{\bullet}{\textbf{K}} \right]^{+} \quad \text{d)} \left[\overset{\bullet}{\textbf{Br}} \overset{\bullet}{\textbf{Sc}} \right]^{-} \\ = \text{e)} \left[\overset{\bullet}{\textbf{Sc}} \overset{\bullet}{\textbf{Sc}} \overset{\bullet}{\textbf{Sc}} \right]^{3+} \quad \text{f)} \cdot \overset{\bullet}{\textbf{N}} \cdot \quad \text{g)} Ca : \quad \text{h)} \left[\overset{\bullet}{\textbf{Sc}} \overset{\bullet}{\textbf{Sc}} \right]^{2-} \\ = \text{e} \cdot \overset{\bullet}{\textbf{N}} \cdot \overset{\bullet}{$$


1.3. a)
$$[H:]^{-}$$
 b): $Kr: c) [:K:]^{+} d) [:Br:]^{-} e) [:Sc:]^{3+} f) \cdot N \cdot g) Ca: h) [:Se:]^{2-}$

1.4. a) $S=C=S$ b) $H-C-C-C-H$ c): $C=C-C-C$ d): $C=C-C$


- **1.5.** b), d), e) y g) tienen momento dipolar.
- **1.6.** a) Lineal, sp; b) lineal, sp; c) trigonal plana, sp^2 ; d) trigonal plana, sp^2 ; e) tetraédrica, sp^3 ; f) pirámide trigonal, sp^3 ; g) tetraédrica, sp^3 ; h) tetraédrica, sp^3 ; i) angular, sp^3 ; j) lineal, sp^3 ; k) angular, sp^3 ; l) bipirámide trigonal, sp^3d ; m) "balancín" (tetraedro irregular), sp^3d ; n) octaédrica, sp^3d^2 ; o) pirámide cuadrada, sp^3d^2 ; p) los carbonos unidos por enlace triple tienen geometría lineal e hibridación sp, el boro tiene geometría trigonal-plana e hibridación sp^2 y el carbono del grupo metilo tiene geometría tetraédrica e hibridación sp^3 ; q) angular, sp^2 ; r) trigonal-plana, sp^2 .
- **1.7.** a) Trigonal-plana, angular y lineal, respectivemente; b) X = C, Y = O, Z = F.

- **1.9.** Orden enlace = 3; diamagnético.
- **1.10.** O = O diamagnético

1.11. El solapamiento lateral de los seis orbitales atómicos $2p_z$ da lugar a 6 orbitales moleculares de tipo π , 3 enlazantes y 3 antienlazantes:

Hay 3 enlaces π , distribuidos entre los 6 átomos de carbono, es decir, deslocalizados en el anillo. El orden de enlace asociado a los orbitales moleculares de tipo π es 3, resultando medio enlace entre cada par de átomos de carbono. Teniendo en cuenta además el esqueleto de enlaces σ , el orden de enlace total para cada enlace carbono–carbono es 1.5.