ENUNCIADOS. Tema 6: EQUILIBRIOS ÁCIDO-BASE I.

- **6.1.** a) ¿Cuál es la [H₃O⁺] producida por ionización del agua en una disolución 0,10 M de HCl? ¿Puede despreciarse esta concentración frente a la de [H₃O⁺] procedente del HCl? b) ¿Y en una disolución 1,0 × 10⁻⁸ M de HCl?
- **6.2.** A 60 °C la densidad del agua es 0,983 g/mL y $K_w = 9.6 \times 10^{-14}$. Calcula el pH del agua pura a esa temperatura. ¿Es ácida, básica o neutra el agua a esa T? ¿Cuál es el porcentaje de ionización del agua?.
- **6.3.** En una disolución acuosa 0,050 M, un ácido débil está ionizado en un 1,2 %. Calcula K_a.
- **6.4.** Los músculos pueden doler tras un ejercicio intenso debido a que se forma ácido láctico a una velocidad mayor a la que se metaboliza para dar CO_2 y H_2O . ¿Cuál es el pH del fluido muscular cuando la concentración de ácido láctico es 1.0×10^{-3} M? Ácido láctico: $K_a = 1.4 \times 10^{-4}$.
- 6.5. Calcula el grado de disociación de un ácido débil para las siguientes concentraciones iniciales de ácido:
 - **a)** $[HA]_0 = 100 \cdot K_a$
 - **b**) $[HA]_0 = K_a$
 - c) $[HA]_0 = K_a/100$
- **6.6.** El aminoácido glicina existe principalmente en la forma ⁺NH₃-CH₂-COO⁻. Escribe las fórmulas del ácido conjugado y de la base conjugada de la glicina. Si su pK_a es 9,78, ¿cuál será el pH de una disolución 0,0100 M de glicina?.
- **6.7.** Calcula las concentraciones de H_3O^+ , OH^- , HCO_3^- y CO_3^{2-} en una disolución acuosa $5{,}00\times10^{-2}$ M de H_2CO_3 . ¿Cuál es el pH de esta disolución? $K_{a1}=4{,}20\times10^{-7}$, $K_{a2}=4{,}80\times10^{-11}$.
- **6.8.** Para el ácido sulfuroso $K_{a1} = 1.7 \times 10^{-2} \text{ y } K_{a2} = 6.5 \times 10^{-8}$.
 - a) Determina el pH de una disolución 0,20 M de este ácido.
 - b) Ordena, de mayor a menor concentración, todas las especies presentes en una disolución acuosa de este ácido.
- **6.9.** Para el ácido carbónico (ácido trioxocarbónico(IV)) $K_{a1}=4\times10^{-7}$ y $K_{a2}=5\times10^{-11}$. Para el ácido sulfuroso (ácido trioxosulfúrico(IV)) $K_{a1}=2\times10^{-2}$ y $K_{a2}=5\times10^{-8}$.
 - a) Determina los valores de K_a y K_b del ión bicarbonato y del ión bisulfito;
 - **b)** En una reacción ácido-base entre ión bicarbonato e ión bisulfito, ¿cuál cederá protones y cuál los aceptará?.
- **6.10.** Una aspirina contiene 500 mg de ácido acetilsalicílico ($K_a = 3.00 \times 10^{-4}$, peso molecular = 180). Si se disuelven dos aspirinas en agua hasta obtener 25,0 mL de disolución, ¿cuál será el valor del pH de la misma?.
- **6.11.** Si el pH de una disolución de ácido sulfhídrico es 4,00, ¿cuál será su concentración? ¿y la concentración en el equilibrio de ión sulfuro? Datos: $K_{a1} = 1,00 \times 10^{-7}$; $K_{a2} = 1,00 \times 10^{-19}$.
- **6.12.** En un laboratorio hay dos disoluciones que tienen el mismo pH, una de ácido clorhídrico y otra de ácido acético. Si tomamos 10 mL de cada una y las valoramos con una disolución de hidróxido de sodio, ¿cuál de las dos disoluciones necesitará mayor volumen de base para llegar al punto de equivalencia?.

SOLUCIONES. Tema 6: EQUILIBRIOS ÁCIDO-BASE I.

- **6.1.** La [H₃O⁺] procedente de la ionización del agua es:
 - a) 1.0×10^{-13} M, que puede despreciarse frente a 0.10 M;
 - **b)** 9.5×10^{-8} M que no puede despreciarse frente a 1.0×10^{-8} M.
- **6.2.** pH = 6.51; Es neutra: $[H_3O^+] = [OH^-]$; $1.1 \times 10^{-6} \% H_2O$ ionizada.
- **6.3.** $K_a = 7.3 \times 10^{-6}$.
- **6.4.** pH = 3.5
- **6.5.** a) $\alpha = 0.0951$
 - **b**) $\alpha = 0.618$
 - **c**) $\alpha = 0.990$
- **6.6. a)** a) +NH₃-CH₂-COOH y NH₂-CH₂-COO⁻;
 - **b)** pH = 5.89
- **6.7.** $[H_3O^+] = 1,45 \times 10^{-4} \text{ M}, [OH^-] = 6,90 \times 10^{-11} \text{ M}, [HCO_3^-] = 1,45 \times 10^{-4} \text{ M}, [CO_3^{2-}] = 4,80 \times 10^{-11} \text{ M};$ pH = 3,84.
- **6.8.** pH = 1,3; $[H_2SO_3] > [H_3O^+] \approx [HSO_3^-] > [SO_3^{2-}] > [OH^-]$
- **6.9.** a) HCO_3^- : $K_a = 5 \times 10^{-11}$, $K_b = 2.5 \times 10^{-8}$. HSO_3^- : $K_a = 5 \times 10^{-8}$ y $K_b = 5 \times 10^{-13}$;
 - b) Cederá el protón el bisulfito y lo aceptará el bicarbonato.
- **6.10.** pH = 2.088
- **6.11.** $c = 0.1 \text{ M}; [S^{2-}] = 1.0 \times 10^{-19} \text{ M}.$
- **6.12.** A volúmenes iguales de ácidos, los volúmenes de la disolución de base para alcanzar los PE dependen sólo de las concentraciones de los ácidos. Por otra parte, $c_0(HAc)>c_0(HCl)$ para que la $[H_3O^+]$ sea la misma siendo HAc un AD y HCl un AF. Por lo tanto, se necesita mayor volumen de base para valorar los 10 mL de $HAc_{(ac)}$.

