EXPERIMENTACIÓN BÁSICA EN QUÍMICA (jueves 10 de mayo 2012)

APELLIDOS:	
NOMBRE:	GRUPO:

- 1.- Algunas lejías de uso doméstico son disoluciones acuosas al 5% en peso de hipoclorito de sodio que está totalmente disociado en disolución. El ácido hipocloroso presenta un p*K*a de 7,5.
 - a) Calcula la molaridad del hipoclorito de sodio en la lejía (dato: se supone que la lejía tiene la misma densidad que el agua.
 - b) Formula la reacción del anión hipoclorito, CIO-(aq), en agua. Escribe la expresión de la constante de equilibrio y calcula dicha constante numéricamente.
 - c) Calcula el pH de la lejía. Si se desea cambiar el pH de la lejía a 6,5 ¿habrá que añadir NaOH o HCI?
 - d) En una lejía cuyo pH se ha ajustado a 6,5 ¿cuál es el cociente de concentraciones entre base y ácido conjugado?

Masas atómicas: Cl=35.5, O=16, H=1, Na=23

- 2.- Se quiere determinar la concentración de sulfato de hierro (II) de una muestra problema mediante valoración con dicromato potásico. Para ello se llena la bureta con una disolución de $K_2Cr_2O_7$ de concentración 0.025 M preparada previamente. Por otro lado, se pipetean 10 mL de muestra problema y se echan en un matraz erlenmeyer, junto con 10 mL de H_3PO_4 2 M, 10 mL de H_2SO_4 2 M y 10 gotas del indicador difenilaminosulfonato sódico al 0,2 % . En el punto final de la valoración, se han gastado 15.3 mL de $K_2Cr_2O_7$.
 - a) Escribir la reacción de valoración y ajustarla.
 - b) Explicar qué material ha sido necesario utilizar para preparar la disolución de K₂Cr₂O₇, teniendo en cuenta que éste es patrón primario.
 - c) Calcular la concentración de disolución valorante en g/L y equivalentes/L
 - d) Hallar la concentración de sulfato de hierro (II) en la muestra problema, expresada en molaridad.
- e) ¿Por qué se añade H_3PO_4 para realizar la valoración? Mm $(K_2Cr_2O_7) = 294.2$
- 3.- La ley de velocidad de la reacción $S_2O_8^{2^-}(ac) + 2 I^-(ac) \rightarrow I_2(ac) + 2 SO_4^{2^-}(ac)$ es de la forma: $v = k \left[S_2O_8^{2^-}\right]^m \left[I^-\right]^n$.
- (a) En un conjunto de ensayos se midieron las velocidades iniciales, v_o , correspondientes a distintas concentraciones iniciales de $S_2O_8^{2-}$, $[S_2O_8^{2-}]_o$, siendo la concentración inicial de I^- 0.077M constante. Explica por qué y cómo pueden usarse estos datos experimentales para obtener el orden de reacción en $S_2O_8^{2-}$ por ajuste de mínimos cuadrados a una recta.
- (b) Calcula el orden de reacción en $S_2O_8^-$ y la constante de velocidad k (con sus unidades) si los resultados del ajuste son los siguientes y la reacción es de orden 1 en Γ :

ordenada en el origen = -3.52; pendiente =1.07

- 5.- En el montaje de una pila se utilizan dos vasos, en los que ponemos un electrolito y una barra metálica. Ambos vasos se unen con un puente salino lleno de una disolución saturada de KCI. ¿Cuál sería la diferencia de potencial entre los dos electrodos si:
 - a) En uno de los vasos hay una disolución 1M de ZnSO₄ con un electrodo de Zn y, en el otro, una disolución 1M de CuSO₄ con un electrodo de Cu.
 - b) En un vaso hay una disolución 0.1M de CuSO₄ con un electrodo de Cu y, en el otro, una disolución 0.01M de CuSO₄ con un electrodo de Cu.

Escribir la notación de la pila y la reacción que tiene lugar en el ánodo y el cátodo, en los apartados (a) y (b).

Datos: E° (Cu^{2+}/Cu) = 0.337 V. E° (Zn^{2+}/Zn) = - 0.763 V. F = 96485 C $R = 8.314 \text{ JK}^{-1}\text{mol}^{-1}$