Si necesitas datos adicionales para resolver los problemas, buscalos en las tablas de los libros.

- 1. ¿Cuáles de las siguientes reacciones serán espontáneas en medio ácido? Completa y ajusta las reacciones
 - a. $I^- + NO_3^- \to I_2 + NO$
 - b. $H_2SO_3 + H_2S \rightarrow S$

$$E^{\circ} (H_2SO_3, H^+/S) = 0.45 V; (S, H^+/H_2S) = 0.14 V$$

- 2. ¿Cuál será la reacción espontánea que tendrá lugar entre los siguientes pares de especies?
 - a. $Fe^{3+}/Fe^{2+} \text{ y } I_2/I^{-}$
 - b. $Ag^+/Ag y Br_2/Br^-$
 - c. $Cr_2O_7^{2-}/Cr^{3+}$ y MnO_4^{-}/Mn^{2+}
 - d. H_2O_2/H_2O y NO_3^-/NO
- 3. a. ¿Podría oxidar el ion férrico, pasando a ion ferroso, al ion estaño(II) a ion estaño(IV)?
 - b. ¿Podría oxidar el dicromato, en medio ácido, al ion fluoruro a flúor, pasando a ion cromo(III)?
- 4. Calcula la f.e.m. de la siguiente celda: un electrodo está formado por el par ion férrico/ion ferroso, en concentraciones 1.00 M y 0.10 M, respectivamente; el otro electrodo está formado por el par ion permanganato/ion manganeso(II), en concentraciones 0.010 M y 0.00010 M, respectivamente y pH = 3
- 5. El agua puede actuar como agente reductor del hierro(III) a hierro(III) oxidándose a oxígeno molecular.
 - a. Ajusta la reacción correspondiente, en medio ácido.
 - b. ¿Será espontánea la reacción anterior a pH = 6 y a una presión parcial de oxígeno de 0.20 atm, estando el resto de las especies en condiciones estándar?
 - c. Razona si el poder reductor del agua será mayor en medios aerobios o anaerobios.
- 6. Razona qué formas de manganeso pueden, en condiciones estándar,
 - a. ser oxidadas por el agua
 - b. oxidar al agua.

$$E^{\circ}~(V)~(Mn^{2+}/Mn)=$$
 -1.18; $(Mn^{3+}/Mn^{2+})=1.54;~(MnO_{4}^{-},~H^{+}/Mn^{2+})=1.51;$ $(MnO_{2}(s),~H^{+}/Mn^{2+})=1.22;~(MnO_{4}^{-},~OH^{-}/MnO_{2})=0.59;~(O_{2},~H^{+}/H_{2}O)=1.23;$ $(H_{2}O/H_{2},~OH^{-})=$ -0.83

- 7. Escribe, ajustada, la reacción espontánea que se producirá, en condiciones estándar, entre las dos semipilas siguientes:
 - nitrato, $H^+/dióxido$ de nitrógeno. $E^\circ = 0.80 \text{ V}$
 - yodo/ion yoduro. $E^{\circ} = 0.54 \text{ V}$

 ξ Será esta reacción espontánea en condiciones bioquímicas estándar (pH = 7)?

- 8. En la pila formada por las semicélulas $(MnO_4^-, H^+/Mn^{2+})$ y (F_2/F^-) , es cierto que:
 - a. El MnO_4^- se reduce a Mn^{2+}
 - b. El F₂ se oxida a F⁻
 - c. El F⁻ cede electrones al Mn²⁺
 - d. El $\mathrm{Mn^{2+}}$ es oxidado por el F_2
 - e. El MnO₄ es reducido por el F⁻

- 9. Considera la célula galvánica Pt | $H_2(g)$ | HCl || $CuSO_4$ | Cu | Pt
 - a. Escribe las ecuaciones que tienen lugar en cada electrodo y la reacción global.
 - b. Calcula la f.e.m. si todas las especies se encuentran en sus estados de referencia.
 - c. Calcula la f.e.m. si $P(H_2) = 700$ torr, [HCl] = 0.1 M y $[CuSO_4] = 0.2$ M.
- 10. La f.e.m. de la pila Pt | $H_2(g,1 \text{ bar})$ | $HCl \parallel AgNO_3(0.1 \text{ M})$ | $Ag \mid Pt$ es 0.951 V. Calcula el pH de la disolución de HCl.
- 11. Se construye una pila uniendo dos electrodos de Fe | Fe²⁺ y Cd | Cd²⁺ mediante un puente salino. Calcula la f.e.m. de la pila, identificando ánodo y cátodo, en los siguientes casos:
 - a. $[Fe^{2+}] = [Cd^{2+}] = 0.1 \text{ M}$
 - b. $[Fe^{2+}] = 0.1 \text{ M}, [Cd^{2+}] = 0.001 \text{ M}$
- 12. ¿Para qué concentración de $\mathrm{Sn^{2+}}$ la f.e.m. de la pila Pt | Sn | $\mathrm{SnCl_2}$ || $\mathrm{Pb}(\mathrm{NO_3})_2(0.5\ \mathrm{M})$ | Pb | Pt es 0 V?
- 13. Se construye una pila estándar de cobre-cadmio, se cierra el circuito y se deja que la pila opere. Tras un cierto tiempo, la pila se ha agotado y su f.e.m. es 0 V.
 - a. ¿Cuál será la relación de las concentraciones de Cd^{2+} y Cu^{2+} en ese instante?
 - b. ¿Cuánto valdrán ambas concentraciones?
- 14. Calcula el producto de solubilidad del PbI₂ si los potenciales normales de electrodo de las semirreacciones PbI₂(s) + 2e⁻ \rightarrow Pb(s) + 2I⁻ y Pb²⁺ + 2e⁻ \rightarrow Pb(s) son -0.365 V y -0.126 V, respectivamente.
- 15. Calcula la constante de equilibrio de la reacción (sin ajustar): $\mathrm{Fe^{3+}} + \mathrm{I_2(s)} \rightarrow \mathrm{Fe^{2+}} + \mathrm{I^-}$.
- 16. Calcula la f.e.m. de la pila Cu | $CuSO_4(0.2 \text{ M}) \parallel CuSO_4(0.01 \text{ M}) \mid Cu.$ Escribe las semirreacciones que tienen lugar en cada electrodo así como la reacción neta. ¿En qué sentido se moverán los electrones si se conectan ambos electrodos mediante un alambre?
- 17. Calcula la f.e.m. de la pila Ag | Cd | CdCl₂(0.1 M) | AgCl | Ag.
- 18. Calcula la carga eléctrica que se necesita para obtener, en la electrolisis del agua acidulada con sulfúrico, 4.0 litros de oxígeno medidos a $17^{\circ}\mathrm{C}$ y 700 torr.
- 19. Se desea recubrir una pieza de $3.50~\rm cm^2$ de superficie con una capa de plata de $0.20~\rm mm$ de espesor mediante electrodeposición de una disolución de AgNO₃. ¿Durante cuánto tiempo deberá pasar una corriente de $0.20~\rm A$ para conseguirlo? Dato: $\rho(\rm Ag) = 10.5~\rm g/cm^3$
- 20. Se lleva a cabo la electrolisis de 250 mL de una disolución de CuCl₂ 0.433 M. ¿Durante cuánto tiempo debe circular una corriente de 0.75 A para que se reduzca la concentración de Cu²⁺ a 0.167 M? ¿Qué masa de Cu(s) se depositará en el cátodo durante ese tiempo?
- 21. Un metal de masa atómica relativa 52 se deposita mediante electrolisis en una célula electrolítica. Cuando a través de dicha célula pasan 0.18 A durante 3.00 horas se depositan 0.349 g de metal. ¿Cuál es la carga de dicho metal?
- 22. Cuando se hace circular la corriente eléctrica a través de una célula electrolítica que contiene $Pb(NO_3)_2$, situada en serie con otra en la que existe $CuSO_4$, se depositan 3.056 g de Pb. ¿Qué cantidad de Cu se depositará en la segunda célula?
- 23. Sobre una placa de acero se depositan 2.78 g de zinc metálico cuando pasa una corriente de 4.56 A durante 30.0 minutos a través de una disolución de una sal de zinc. ¿Cuál es el estado de oxidación del zinc en la sal?

Soluciones

1. a. 2
$$\rm NO_3^- + 8~H^+ + 6~I^- \rightarrow 2~NO + 4~H_2O + 3~I_2;$$
 Espontánea

b.
$$H_2SO_3 + 2 H_2S \rightarrow 3 S + 3 H_2O$$
; Espontánea

2. a.
$$2 \text{ Fe}^{3+} + 2 \text{ I}^{-} \rightarrow 2 \text{ Fe}^{2+} + \text{I}_{2}$$

b.
$$2 \text{ Ag} + \text{Br}_2 \rightarrow 2 \text{ Ag}^+ + 2 \text{ Br}^-$$

c. 10
$$Cr^{3+} + 11 H_2O + 6 MnO_4^- \rightarrow 5 Cr_2O_7^{2-} + 22 H^+ + 6 Mn^{2+}$$

d. 3
$$\mathrm{H_2O_2}$$
 + 2 NO \rightarrow 2 $\mathrm{H_2O}$ + 2 $\mathrm{NO_3^-}$ + 2 $\mathrm{H^+}$

3. a. Sí
$$(E^{\circ} = 0.62 \text{ V})$$

b. No (
$$E^{\circ} = -1.54 \text{ V}$$
)

5. a.
$$2 \text{ H}_2\text{O} + 4 \text{ Fe}^{3+} \rightarrow \text{O}_2 + 4 \text{ H}^+ + 4 \text{ Fe}^{2+}$$

b. No (
$$E^{\circ} = -0.10 \text{ V}$$
)

c. En medios anaerobios

b.
$$MnO_4^-$$
 y Mn^{3+}

7. a.
$$2 \text{ NO}_3^- + 2 \text{ I}^- + 4 \text{ H}^+ \rightarrow 2 \text{ NO}_2 + \text{I}_2 + 2 \text{ H}_2\text{O}$$

b. No (E° =
$$-0.57 \text{ V}$$
)

8. respuesta d.

9. b.
$$E = 0.339 V$$

c.
$$E = 0.377 \text{ V}$$

10.
$$pH = 3.6$$

11. a.
$$E = 0.04 V$$
, el ánodo es el electrodo de Fe.

b.
$$E = 0.02 V$$
, el ánodo es el electrodo de Cd.

12. 1.6 M

13. a.
$$[Cd^{2+}]/[Cu^{2+}] = 1.4 \times 10^{25}$$

b.
$$[Cd^{2+}] = 2.0 \text{ M} [Cu^{2+}] = 1.4 \times 10^{-25}$$

14.
$$K_{sp} = 8.3 \times 10^{-9}$$

15.
$$K = 8.8 \times 10^7$$

16. E = -0.038 V. Los electrones se mueven del electrodo de la derecha hacia el de la izquierda.

17.
$$E = 0.696 V$$

18.
$$6.0 \times 10^4 \text{ C}$$

20. 285 minutos; 4.23 g.

$$21. +3$$

$$23. +2$$